5. التكامل المحدود وتطبيقاته

5. تطبيقات التكامل المحدود

تطبيقات التكامل المحدود – أولًا: المساحة الحالة الأولى: مساحة منطقة محصورة بين منحنى اقتران ومحور السينات في الفترة [أ، ب]: نظرية (1) إذا كان ق(س) اقترانًا قابلًا للتكامل في [أ، ب] فإن مساحة المنطقة المحصورة بين منحنى الاقتران ق(س) ومحور السينات في [أ، ب] تُعطى بالعلاقة: مثال (1) احسب مساحة المنطقة المحصورة بين منحنى الاقتران […]

5. تطبيقات التكامل المحدود قراءة المزيد »

4. خصائص التكامل المحدود

بعض خصائص التكامل المحدود للتكامل المحدود خصائص مهمة تسهل حساب قيمته، ومنها: إذا كان ق(س)، ه(س) اقترانين قابلين للتكامل على [أ ، ب] فإن: مثال (1) جد قيمة ما يلي: الحل ثم نقوم بالتعويض عن قيمة س بالقيم 1، 2 لإيجاد الناتج. نظرية إذا كان ق(س) اقترانًا قابلًا للتكامل في الفترة [أ ، ب]، وكان

4. خصائص التكامل المحدود قراءة المزيد »

3. العلاقة بين التفاضل والتكامل

العلاقة بين التفاضل والتكامل تعريف إذا كان م(س) هو أحد الاقترانات الأصلية للاقتران المتصل ق(س) في الفترة [أ ، ب]، فإن المقدار م(ب) – م(أ) يساوي التكامل المحدود للاقتران ق(س) في الفترة [أ ، ب] ونرمز له بالرمز: النظرية الأساسية للتفاضل والتكامل ويسمى ت(س) الاقتران المكامل للاقتران ق(س). وإذا كان ق(س) اقترانًا متصلًا، فإن ت/(س)

3. العلاقة بين التفاضل والتكامل قراءة المزيد »

2. التكامل المحدود

التكامل المحدود مراجعة قواعد التجميع تعريف التكامل المحدود إذا كان الاقتران ق(س) معرفًا ومحدودًا في الفترة [أ ، ب]، وكانت: فإن الاقتران ق(س( يكون قابلًا للتكامل في الفترة [أ ، ب]، ويكون: ونسمي أ، ب حدود التكامل. مثال (1) إذا كان ق(س) = 5 – 4 س، حيث س ϶ [صفر،3]، وباعتبار س ر *

2. التكامل المحدود قراءة المزيد »

1. التجزئة ومجموع ريمان

التجزئة ومجموع ريمان تعريف التجزئة النونية إذا كانت [أ ، ب] فترة مغلقة، وكانت: Ơن = {أ = س0، س١، س ٢، س٣، … ، س ن = ب} حيث: س0 > س١ > س ٢ > س٣ ….. > س ن، فإننا نسمي ن تجزئة نونية للفترة [أ ، ب]. وتسمى الفترة [س ر-

1. التجزئة ومجموع ريمان قراءة المزيد »

error:
Scroll to Top